# A Study of the Self-Passivation of Space-Survivable POSS Kapton Polyimides



Dr. Sandra J. Tomczak

AFRL/PRSM Materials Application Branch
Space and Missile Propulsion Division
10 East Saturn Blvd., Bldg. 8451,
Edwards AFB, CA 93524-7680
Phone: (661) 275-5171

sandra.tomczak@edwards.af.mil

Mrs. Vandana Vij, Dr. Tim Haddad, ERC Inc. Dr. Darrell Marchant, Dr. Joe Mabry (Group Lead)
AFRL/PRSM, Edwards AFB, CA.

Dr. Timothy K. Minton, Amy Brunsvold, Montana State University

| maintaining the data needed, and c<br>including suggestions for reducing                  | ompleting and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding an | o average 1 hour per response, inclu-<br>ion of information. Send comments<br>arters Services, Directorate for Infor<br>ny other provision of law, no person | regarding this burden estimate mation Operations and Reports | or any other aspect of the 1215 Jefferson Davis | is collection of information,<br>Highway, Suite 1204, Arlington |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|--|
| 1. REPORT DATE JUL 2005                                                                   |                                                                                                                  | 2. REPORT TYPE                                                                                                                                               |                                                              | 3. DATES COVE                                   | RED                                                             |  |
| 4. TITLE AND SUBTITLE                                                                     |                                                                                                                  |                                                                                                                                                              | 5a. CONTRACT NUMBER                                          |                                                 |                                                                 |  |
| A Study of the Self-Passivation of Space-Survivable POSS Kapton Polyimides Poster Session |                                                                                                                  |                                                                                                                                                              | Kapton                                                       | 5b. GRANT NUMBER                                |                                                                 |  |
| 6. AUTHOR(S) Sandra Tomczak; Vendana Vij; Darrell Marchant; Timothy Haddad; Joseph Mabry  |                                                                                                                  |                                                                                                                                                              | 5c. PROGRAM ELEMENT NUMBER                                   |                                                 |                                                                 |  |
|                                                                                           |                                                                                                                  |                                                                                                                                                              | 5d. PROJECT NUMBER <b>DARP</b>                               |                                                 |                                                                 |  |
|                                                                                           |                                                                                                                  |                                                                                                                                                              |                                                              | 5e. TASK NUMBER A443                            |                                                                 |  |
|                                                                                           |                                                                                                                  |                                                                                                                                                              | 5f. WORK UNIT NUMBER                                         |                                                 |                                                                 |  |
|                                                                                           | •                                                                                                                | DDRESS(ES) C),AFRL/PRSM,10                                                                                                                                   | E. Saturn                                                    | 8. PERFORMING<br>REPORT NUMB                    | GORGANIZATION<br>ER                                             |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                   |                                                                                                                  |                                                                                                                                                              | 10. SPONSOR/MONITOR'S ACRONYM(S)                             |                                                 |                                                                 |  |
|                                                                                           |                                                                                                                  |                                                                                                                                                              | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)                    |                                                 |                                                                 |  |
| 12. DISTRIBUTION/AVAIL Approved for publ                                                  | LABILITY STATEMENT ic release; distributi                                                                        | ion unlimited                                                                                                                                                |                                                              |                                                 |                                                                 |  |
| 13. SUPPLEMENTARY NOTES                                                                   |                                                                                                                  |                                                                                                                                                              |                                                              |                                                 |                                                                 |  |
| 14. ABSTRACT <b>N/A</b>                                                                   |                                                                                                                  |                                                                                                                                                              |                                                              |                                                 |                                                                 |  |
| 15. SUBJECT TERMS                                                                         |                                                                                                                  |                                                                                                                                                              |                                                              |                                                 |                                                                 |  |
| 16. SECURITY CLASSIFIC                                                                    | ATION OF:                                                                                                        |                                                                                                                                                              | 17. LIMITATION OF<br>ABSTRACT                                | 18. NUMBER<br>OF PAGES                          | 19a. NAME OF<br>RESPONSIBLE PERSON                              |  |
| a. REPORT<br>unclassified                                                                 | b. ABSTRACT <b>unclassified</b>                                                                                  | c. THIS PAGE unclassified                                                                                                                                    | ADSTRACT                                                     | 16                                              | ALSFONSIBLE PERSON                                              |  |

**Report Documentation Page** 

Form Approved OMB No. 0704-0188



### Goal









Our goal is to create an efficient drop-in replacement for Kapton that:

- Has increased space survivability due to resistance to atomic oxygen, thermal cycling, solar UV and VUV radiation, protons and electrons.
- 2. Is **Self-Passivating** based on hybrid organic/inorganic nanocomposite incorporation
- 3. Has superior optical properties, low solar absorptance, high thermal reflectance
- 4. Has excellent mechanical thermal properties.







### Atomic Oxygen in Lower Earth Orbit



### LEO Environment (Altitudes of 200 to 1500 km)

- Atomic Oxygen (AO): ~10<sup>6</sup> 10<sup>8</sup> atoms/cm<sup>3</sup>, up to 90 % of the atmosphere at 500km (typical altitude for international space station).
- Typical orbital speed of spacecraft is 7.8 km/sec
- Actual AO flux on spacecraft
   ~10<sup>12</sup> 10<sup>14</sup> atoms/cm<sup>2</sup>•s
- AO Collision energy ~ 5eV
   (C-C bond energy ~ 4 eV,
   C-N ~ 3eV, Si-O ~ 8.3eV)
- Low-energy and high energy charged particles.
- Thermal cycling -50 to 150°C
- Solar VUV and UV radiation (~ 100 - 400 nm)
- Bond scission and radical formation can lead to embrittlement.

| Bond                                   | Dissociation<br>Energy (eV) | λ <b>(nm)</b> | Material            |
|----------------------------------------|-----------------------------|---------------|---------------------|
| -C <sub>6</sub> H <sub>4</sub> -C(=O)- | 3.9                         | 320           | <b>Kapton</b> ®     |
| C-N                                    | 3.2                         | 390           | Kapton <sup>®</sup> |
| Si-O                                   | 8.3                         | 150           | Nanocomposite       |





**Scanning Electron** 

Of Kapton MLI Surface.

Micrograph \

#### AO Undercutting Study of Aluminized-Kapton MLI Kim K. de Groh and Bruce A. Banks Spacecraft and Rockets, Vol. 31, No. 4, (1994)



#### MLI were flown 5.8 yrs in LEO on the Long Duration Exposure Facility.

Total AO Exposure: 9 x 10<sup>21</sup> atoms/cm<sup>2</sup> 95% of Al-Kapton underwent underpinning.



Fluence atoms/cm<sup>3</sup>:

Eroded material divided by

Kapton erosion yield of 3 x 10<sup>21</sup> cm<sup>3</sup>/atom.

DISTRIBUTION A. Approved for public release; distribution unlimited.



### **POSS-Kapton Polyimides**



$$H_2N$$
  $O$   $NH_2$ 

ODA

### transparent films at 25 wt % POSS.



- POSS Polyimides do not lose rigidity above the glass transition temperature.
- ➤ Tg of POSS polyimides is 5 10 % lower than polyimides (414°C).
- Room temperature modulus unaffected by POSS.
- ➤ High temperature modulus (above 430°C) is increased with POSS content.



### **O-Atom Etching Experiment**

Total AO fluence of  $8.47 \times 10^{20}$  atoms cm<sup>-2</sup> (100,000 pulses)





Hyperthermal AO Beam  $(CO_2 laser, 0 = 4.93-8.42 eV)$ 



Screen Sample

#### Kapton H Standard

Average etch depth:



Kapton 10 wt% (2 mole %) POSS

Average etch depth:



Significantly improved oxidation resistance due to a rapidly formed ceramic-like, passivating silica layer preventing further degradation of underlying virgin polymer.



### AFM Images of POSS Polyimides With increasing AO Flux.

 $(10 \times 10 \mu m; z scale = 500 nm)$ 







# Surface Atomic Concentrations (%) determined from XPS (X-ray Photoelectron Spectroscopy) Survey Scans before and after exposure to Atomic Oxygen.

| <br>Sample                  | Exposure<br>(beam pulses) | Kapton-equivalent<br>atomic oxygen<br>fluence<br>(10 <sup>20</sup> O atoms cm <sup>-2</sup> ) | С                           | 0                                  | Si                               | N                    |  |
|-----------------------------|---------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|----------------------------------|----------------------|--|
| 0 wt%<br>POSS<br>polyimide  | 0<br>6<br>100<br>250      | 0<br>~0.1<br>1.63<br>4.10                                                                     | 72<br>69<br>69<br>55        | 19.5<br>20<br>24<br>36             | 1<br>2<br>1<br>0                 | 7<br>9<br>6<br>9     |  |
| 10 wt%<br>POSS<br>polyimide | 0<br>6<br>100<br>250      | 0<br>~0.1<br>1.63<br>4.10                                                                     | 77<br>73<br>48<br><b>20</b> | 16<br>18.5<br>30<br><b>56</b>      | 2<br>5<br>19<br><b>23.5</b>      | 5<br>3.5<br>3<br>0.5 |  |
| 20 wt%<br>POSS<br>polyimide | 0<br>6<br>100<br>250      | 0<br>~0.1<br>1.63<br>4.10                                                                     | 70<br>66<br>20<br><b>12</b> | 20<br>24<br><b>54</b><br><b>60</b> | 6<br>7<br><b>25</b><br><b>26</b> | 4<br>3<br>0<br>1     |  |

Calculated at%: 0 wt% POSS PI: C = 75.9, O = 17.2, Si = 0, N = 6.9 10 wt% POSS PI: C = 75, O = 17.2, Si = 1, N = 6.4. 20 wt% POSS PI: C = 75, O = 17.2, Si = 1.8, N = 6.0



## Erosion of POSS Polyimides by a Beam of Hyperthermal (5eV) O Atoms



1st AO Erosion experiment: The erosion rate of the 10 and 20 wt % POSS Polyimide samples were 3.7 and 0.98 percent, respectively, of the erosion rate for Kapton H at the highest fluence used in this experiment (8.5x10<sup>20</sup> atoms cm<sup>-2</sup>).

2<sup>nd</sup> AO Erosion Experiment:

The new 25 wt% POSS polyimide samples had an erosion rate that was 0.3 percent of the erosion rate for Kapton H at a fluence of 8.5×10<sup>20</sup> atoms cm<sup>-2</sup>.

This erosion rate is one third that of the previously synthesized 20 wt% POSS polyimide.





# Self-passivation of POSS Polyimide Upon Exposure to 2.3x10<sup>20</sup> O atoms cm<sup>-2</sup>.



Dr. Timothy Minton Amy Brunsvold

SiO<sub>2</sub> (130 nm) / Kapton (2 mil) / Al (100nm)

Commercial Kapton H

Sample diameter = ½ inch.



Screen-protected samples were exposed to  $2.3x10^{20}$  O atoms cm<sup>-2</sup>, unprotected, scratched with a diamond scribe 1  $\mu$ m deep, screen-protected, and re-exposed to  $2.3x10^{20}$  O atoms cm<sup>-2</sup>.



### **Summary of Self-Passivation Study**



| 480 |  |                         |  |      |  |
|-----|--|-------------------------|--|------|--|
|     |  |                         |  |      |  |
|     |  | SiO <sub>2</sub> coated |  | 25 w |  |

| SiO <sub>2</sub> coated |  |
|-------------------------|--|
| Kapton HN               |  |
| with Al                 |  |
| under-coating           |  |

Kapton H

5 µm

25 wt % POSS polyimide

0.200 µm

Erosion depth after 1st exposure to 2.3x10<sup>20</sup> O atoms cm<sup>-2</sup>.

~ 0 **µ**m

All samples were scratched 1 µm deep.

Erosion depth outside
of the scratch after
2<sup>nd</sup> exposure to
2.3x10<sup>20</sup> O atoms cm<sup>-2</sup>.



5 µm

~ 0 µm

Erosion depth inside of the scratch after 2<sup>nd</sup> exposure to

2.3x10<sup>20</sup> O atoms cm<sup>-2</sup>

7 **µ**m

5 μm

O.200 μm

DISTRIBUTION A. Approved for public release; distribution unlimited



# SEM of Kapton H surface after the Second Atomic Oxygen Exposure







# SEM Images of Scratch on SiOx Coated Kapton After Second AO Exposure





## SEM of 25 wt % POSS Polyimide Surface After the Second Atomic Oxygen Exposure







### New POSS Monomer





➤ China Lake Naval Air Warfare Center, Weapons Division collaborators:
Dr. Michael Wright, Dr. Brian Petteys, Dr. Andy Guenthner, Dr. Gregory Yandek.

#### Recently synthesized:

Side-chain POSS diamine monomer which is relatively inexpensive and of facile synthesis.

Resultant POSS Polyimdes are transparent flexible films.

| Sample                                    | Kapton-Equivalent<br>Fluence/10 <sup>20</sup> O<br>atoms cm <sup>-2</sup> . | Erosion Yield                            |
|-------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|
| Kapton H                                  | 4.10                                                                        | 12.3                                     |
| 20 wt % main-chain<br>POSS polyimide      | 4.10                                                                        | 0.47<br>Is 3.8 % of that of<br>Kapton H. |
| Kapton H                                  | 3.53                                                                        | 10.6                                     |
| 7 Si8O12 wt % side-chain POSS polyimide.* | 3.53                                                                        | 0.35<br>Is 3.3 % of that of<br>Kapton H. |

AO resistance is similar between main-chain and side-chain POSS polyimides.

\* equivalent SiO content to 20 wt % main-chain POSS PI

DISTRIBUTION A.

Approved for public release;
distribution unlimited.



### **Acknowledgments**



<u>Polymer Working Group</u>: Dr. Rusty Blanski, Mr. Pat Ruth, Mrs. Sherly Largo, Ms. Sarah Mazzella, 2Lt. Amy Palecek, 2Lt. Laura Moody.

Previous Group Member: Capt. Rene Gonzalez, Ph. D.

Branch Chief: Dr. Steve Svejda

#### **Collaborators**:

Hybrid Plastics: Dr. Joesph Lichtenhan

China Lake Naval Weapons Center: Dr. Mike Wright, Dr. Andy Guenthner,

Dr. Brian Pettys, Dr. Gregory Yandek

Michigan State University: Dr. Andre Lee

### **Funding:**

Air Force Office of Scientific Research, Dr. Charles Lee Defense Advanced Research Projects Agency, Dr. Leo Christodolou

